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Abstract. The influence of thermalized non-coherent carriers on the dielectric function of GaAs/AlAs quan-
tum wells is investigated by reflection spectroscopy. Experiments are performed using the method of
spectral interferometry, where both amplitude and phase of reflected pulses can be determined. For low
excitation density the complex coefficient of reflection can be described using as dielectric function a broad-
ened Elliot formula. With increasing carrier density pronounced nonlinearities appear in both amplitude
and phase due to many-body effects between excited carriers. The nonlinear behavior fits very well to the
results of a many-body theory based on the Semiconductor Bloch equations including memory effects in
the scattering processes between carriers and the polarization induced by the probe pulse.

PACS. 71.35.-y Excitons and related phenomena – 71.45.Gm Exchange, correlation, dielectric and
magnetic response functions, plasmons – 78.20.-e Optical properties of bulk materials and thin films –
78.67.De Quantum wells

1 Introduction

The nonlinear dielectric properties of semiconductor
microstructures are of great interest both for device
applications and from the principle point of material char-
acterization. Addressing in this paper the influence of
thermalized, incoherent carriers on the coherent dielectric
response in GaAs quantum wells in the excitonic region,
one has to find an accurate and convenient method to
determine the response with lowest excitation density in-
duced by the probe in a first step. In the conventional way,
one measures the intensity, i.e. the amplitude of the re-
flected/transmitted beam. Then real and imaginary part
of the dielectric function can be reconstructed by apply-
ing the Kramers-Kronig Relation (KKR) between them.
However, the well-known problem appears, that the ap-
plication of the KKR requires the knowledge of the reflec-
tion/transmission over a wide range of energy. To omit
this problem and to get the full information about the
investigated system, the measurement of both amplitude
and phase of the test field [1–3] is necessary by e.g. femto-
second spectral interferometry (SI) [4,5]. By interferom-
etry with a known reference field, the method is used to
determine the complex coefficient of reflection

r(ω) = |r(ω)| × ei φ(ω) (1)

measuring the phase and amplitude of reflected pulses.
Due to its high sensitivity it allows to reach the regime of
linear response quite easily.
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In [6] SI was successfully applied to determine the
refractive index and the absorption coefficient of GaAs
quantum wells in dependence on the temperature. Exper-
imental data were well described by a broadened Elliot
formula, extended by KKR to the real part of the dielec-
tric function and taking into account the confinement of
carriers in the wells by a parameter of fractional dimen-
sion [7].

Studying the influence of thermalized non-coherent
carriers on the optical response in quantum wells one ad-
ditionally has to find appropriate methods to describe
changes of the energetic position (energy shift) and the
lineshape of the exciton taking the confinement of the
injected carriers in the wells into account. Even though
the binding energy of the exciton is increased in two-
dimensional (2d) systems, many-body effects are reduced
in comparison to bulk semiconductors. This was shown
in [8], considering the Coulomb-Hartree Fock renormal-
ization of excitons in the 2d case, to be the result of the
confinement of carriers, which restricts the interaction be-
tween them. The influence of the screening of the Coulomb
interaction on the absorption was investigated in [9], by
applying a static limit for the plasmon-pole approxima-
tion of the longitudinal dielectric function. Within such a
treatment, which was widely used in the literature, cor-
relation effects in the interband selfenergy are overesti-
mated. This results in a strong red shift of the exciton
with increasing excitation (carrier density), while in the
experiments the energetic position of the exciton remains
nearly unchanged. Considering the sub-band quantization
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of carriers in the wells a more realistic consideration of the
reduced dimensionality in quantum wells in contrast to a
pure 2d-treatment was given in [10–12].

Another problem consists in an appropriate descrip-
tion of the increase of broadening of the exciton resonance,
which was first considered by a constant dephasing rate. In
order to get a better agreement with the exciton lineshape
sophisticated phenomenological models for the dephasing
in quantum wells were applied, describing the exponen-
tial absorption wings [13]. In [14] many-body effects were
introduced phenomenologically in an Elliot formula for
2d-systems. However, in this model only selfenergy effects
are considered. Since the reduction of the Coulomb inter-
action due to phase-space filling and screening is not taken
into account the exciton experiences a large red shift,
which is still larger than that in the treatments [9,10].

A strict microscopic consideration of many-body
effects based on the Semiconductor Bloch Equations
(SBE) [15] was presented in [16,17]. Here the many-body
effects arise via scattering terms in the kinetic equations
for the coupled two-band density matrix. This scattering
terms can be split into two classes, describing so-called
diagonal (selfenergy) and off-diagonal correlation effects
(reduction of the Coulomb interaction), which both com-
pensate one another. While the interplay of the real parts
leads to a nearly unchanged position of the exciton res-
onance, the off-diagonal dephasing compensates partially
the diagonal dephasing and results in a correct description
of the gain at lower energies [18].

An additional aspect came into the discussion by inves-
tigating memory effects in the scattering terms (quantum-
kinetic description) [19,20]. Meanwhile, unambiguous
signatures of quantum-kinetic effects were found for
both electron-LO-phonon and electron-electron scattering
(see [21–23] and papers cited there). For bulk GaAs we
have demonstrated in [24] that memory effects in the scat-
tering terms play an important role for the linear optical
response. Considering a thermal population of carriers the
solution of the SBE’s can be simplified by Fourier transfor-
mation, where the memory effects result in a dependence
of the many-body effects on the energy of the exciting test
pulse. The energy dependence is responsible for the correct
description of the spectral properties (shift and lineshape)
and of the behavior of the phase of transmitted pulses.

Our experimental setup is characterized in Section 2.
In Section 3 we start with the investigation of the opti-
cal response of the non-excited sample, in order to fit the
exciton parameters, and develop a convenient theoretical
model for the dielectric function in the wells. We will show,
that as in [6] our results fit very well with a broadened El-
liot formula for systems with broken dimension, extended
by the corresponding real part via KKR [7]. Here the re-
duced dimensionality in the wells is fitted by a parameter
getting best agreement with the experiment. We also solve
the SBE’s considering the confinement of carriers by an
expansion with respect to the sub-band-wave functions in
the wells. We get perfect agreement of the real and imag-
inary part of the dielectric function with the result from
the broadened Elliot formula. This allows us to investigate
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Fig. 1. Sample structure.

the influence of thermalized non-coherent carriers in Sec-
tion 4 on the linear optical response including the many-
body effects between carriers and the laser-induced polar-
ization in the SBE’s. We extend our many-body approach
presented in [24] for bulk semiconductors to quantum
wells, where in contrast to earlier treatments quantum
kinetic effects are considered. We show, that the results
of our many-body approach agree with the experimental
findings.

2 Experiment

The investigated sample (see Fig. 1) is a high quality quan-
tum well structure grown by molecular-beam epitaxy on a
GaAs substrate [25] and contains a series of single quan-
tum wells with lZ from 3.3 nm up to 83 nm separated
by AlAs/GaAs superlattices, where only those with well
width lZ ranging from 9.9 nm up to 19.8 nm were studied
in detail.
To perform SI we use a stabilized Mach-Zehnder interfer-
ometer (Fig. 2, top) with a piezo-actuator controlled by a
capacitive sensor element inside a PID servo loop. The ac-
curacy of the interferometer as tested by a HeNe laser au-
tocorrelation measurement is about 0.022 fs. SI requires
a reference field with a well known phase. Therefore the
chirp of a 120 fs titan-sapphire laser pulse is carefully min-
imized by a prism pulse compressor and controlled using
a SHG-FROG setup [2,26].

This chirp free pulse is divided into two replicas us-
ing a beam splitter. One beam is focused on the quantum
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Fig. 2. Experimental setup (top), reference and signal spectra
(middle), temporal interferogram for fixed frequency (�ω =
1.5412 eV, bottom).

well sample and the reflex is called signal field Esig. The
other beam is used as the time delayed reference field Eref ,
mode-matched and collinearly recombined with the signal
field using a second beam splitter and send to a CCD spec-
trometer with a resolution of 0.4 meV.

The sample is mounted on a copper block in a He flow
cryostat and was held at T = 12 K. The probe beam is
focused to a spot size of 40 × 70 µm2, the pump beam
to a size of 70 × 150 µm2. The pump beam arrives non-
collinearly to the probe and at fixed delay time τPP =
20 ps before the probe.

The strong non-resonant reflection due to the back-
ground index of reflection was efficiently suppressed by
measuring the reflected laser pulse for incidence at the
Brewster angle (φB = 72◦).

The measured spectral interferogram I(ω, τ) is given
as a Fourier transformed superposition of reference Eref

and signal field Esig in time domain:

I(ω, τ) =
∣∣∣∣
∫ ∞

−∞
dt (Eref(t − τ) + Esig(t))eiωt

∣∣∣∣
2

(2)

= Iref(ω) + Isig(ω)
+ 2 |Eref(ω)| |Esig(ω)| cos(φsig(ω) − φref(ω) − ωτ).

According to equation (2) we first record the reference and
signal spectra by blocking one beam (Fig. 2, middle) and
then the interferogram for several time delays.

There are in principle two ways to analyze such in-
terferograms. The first is the Fourier transform spectros-
copy [4], which consists of Fourier transforming the data
into the time domain where two mirror images of the tem-
poral dependence exist. The negative time curve can be
neglected and an inverse Fourier transformation gives the
full complex field in frequency domain. We preferred an-
other way by changing the time delay interferometrically
controlled, so that e.g. the stability of the interferometric
setup is obvious. For a fixed frequency ω the measured
data can be fitted by cosine function (Fig. 2, bottom):

I(ω, τ) = A(ω) + B(ω) cos(C(ω) − ωτ). (3)

The signal field can be evaluated with the measured chirp
free reference field (|Eref(ω)| =

√
Iref(ω), φref(ω) = 0) by

a comparison of coefficients between equations (2) and (3):

Esig(ω) = |Esig(ω)|eiφsig(ω) (4)

=
B(ω)

|Eref(ω)|e
i C(ω). (5)

3 Linear properties

In the case of weak probe pulses (linear response), the
reflected signal field can be written as

Esig(ω) = r(ω)Eref(ω) (6)

and the complex coefficient of reflection can be easily es-
timated for a chirp free reference field.

The measured complex coefficient of reflection at low
temperature (T = 12 K) and at low excitation fluences
F0 = 0.6 nJ/cm−2 without the pump pulse is shown in
Figure 3 (solid line). The exciton resonances for the quan-
tum wells are clearly separated and can be assigned to the
heavy and light hole excitons in the single wells. The car-
rier density induced by the test pulse, which can be esti-
mated using the absorption of the quantum well (Fig. 4),
is about n = 2.1 × 107 cm−2, and low enough to be in
regime of linear response. We find pronounced changes
of the phase at the single exciton resonances, which differ
from well to well, showing a jump-like or a more dispersive
behavior. In order to describe the behavior of the complex
coefficient of reflection in Figure 3 we have calculated the
light propagation through the sample using a many-layer
model and standard matrix techniques, which takes into
account the non-resonant and the excitonic parts of the
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Fig. 3. Complex coefficient of reflection: measurement (solid
line) and dielectric model (dashed).

dielectric function of the superlattices and quantum wells,
respectively. We assumed a local susceptibility for each
well, since the width is much smaller then the wave length.

The dielectric properties of the superlattice are speci-
fied by the dielectric properties of GaAs and AlAs without
any excitonic effects. The background dielectric function
εB(ω) is given by a single effective oscillator [27]:

εB(ω) = 1 +
Ed

E0

1
1 − (�ω/E0)2

· (7)

We use for GaAs (AlAs) the oscillator strength Ed =
32 (33.65) and the energy E0 = 3.74 eV (4.8 eV). Due to
the superlattices acting as barriers between the wells the
total number of layers in the sample is 177. In order to
simplify the calculations effective dielectric functions for
the superlattices are introduced

εeff(ω) =
∑

i liZεi
B(ω)∑

i liZ
· (8)

Consequently our effective model is composed of 14 layers
including five GaAs quantum wells (9.9 nm to 83 nm).

The dielectric function of the wells is composed of three
components: the part of (i) the heavy and (ii) light hole
exciton described by a broadened Elliot formula within
the Tanguy-model [7] and (iii) the background part. The
exciton resonance is described by the oscillator linewidth
(damping) γ, the strength A and the parameter of the
effective dimension d in regard to the finite quantum con-
finement [5]. Moreover we use an energy dependent damp-
ing γ(ω) according to [24]

γ(ω) = γ0 f(ω) , f(ω) = c1 + c2 tanh (c3 ω + c4), (9)

which reduces the influence of the higher excited exciton
states (2s, 3s,. . . ) in the region from the 1s-exciton to the
band gap by a higher damping. The parameters c1, . . . , c4

Table 1. Fit parameters for complex coefficient of reflection
within the Tanguy model.

lZ/nm d Ahh/eV3− d
2 γhh/meV Alh/eV3− d

2 γlh/meV

19.8 2.53 0.12 0.16 0.09 0.26
15.2 2.46 0.10 0.19 0.04 0.14
12.2 2.40 0.13 0.30 0.10 0.96
9.9 2.36 0.17 0.45 -/- -/-

are chosen as follows: damping of the 1s-state is taken to
be γ(Egap−Eb,d

ex ) = γ0, with Eb,d
ex being the binding energy

of the 1s-exciton in the quantum well, the damping of the
2s-state γ(ω2s) = 5 γ0, as the limit high in the band γ(ω �
Egap) = 6 γ0 (Egap - gap energy) is set, and the asymptotic
γ(ω � Egap−Eb

ex) = 0.5 γ0 is fitted to get best agreement
with the experiment. This damping is introduced more or
less phenomenological, taking into account the influence
of phonons and impurities, and leads to better agreement
of the theoretical model with the experimental findings for
the non-excited sample.

The exciton parameters for the single wells are deter-
mined to give the best fit to the experiment. The resulting
complex coefficient of reflection is presented in Figure 3
by the dashed line, the exciton parameters are given in
Table 1. We find an excellent agreement both in ampli-
tude and in phase between the measured and the modeled
coefficient of reflection over the whole spectral range.

Alternatively, we have calculated the susceptibil-
ity χ(ω) for the different quantum wells by solving the
semiconductor Bloch equations (SBE) for the laser in-
duced polarization pk(ω)

{
ω − k2 + iγ(ω)

}
pk(ω) +

∑
q

ṽeh
k−q pq(ω) = dcv E(ω),

(10)

where dcv is the dipole matrix element, and E the electric
field. We have used the energy dependent damping (9),
taking into account the increase of damping towards to
the band gap. The damping constant γ0 is fitted to the
linewidth of the exciton (1s-state) taken from the exper-
iment at lowest excitation. The Coulomb interaction ṽeh

q

is used in quantum well representation [10–12,16]:

ṽeh
q =

4π

q
Jeh

q , (11)

Jeh
q =

∫
dze dzh |Φe(ze)|2 |Φh(zh)|2e−q(ze−zh). (12)

Here the function Jeh
q describes the deviation of the quasi-

2d quantum well potential ṽeh
q from the pure 2d-Coulomb

interaction v2d
q = 4π/q (we use 3D-exciton parameters

throughout the paper). In comparison to the bulk case
the SBE is reduced to an effective two-dimensional de-
scription with the two-dimensional wave vector q in the
plane perpendicular to the growth direction of the sam-
ple. The confinement in growth direction is accounted by
the eigenfunctions Φa(za) of electrons/holes (a=e, h) in
the quantum well.
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In order to simplify our representation we have
dropped the quantum numbers of the single sub-band
levels and considered only the ground states. For the
investigated quantum wells with well width not larger
than 20 nm this limitation is valid since the separation
of the sub-band energies is large enough. Moreover, cou-
pling between single sub-bands is neglected. In a com-
plete quantum-well representation the quantum-well inter-
action (11) would depend on four sub-band levels and the
polarization on two, correspondingly. However, within our
approximation we are able to explain all features found in
the experiment. Moreover we find excellent agreement for
the imaginary part of the susceptibility between the micro-
scopic approach (10,11) and the phenomenological treat-
ment of the reduced dimensionality with the broadened
Elliot formula [7] (Fig. 4). The deviations are below 1%.
For comparison the result with a constant damping (fixed
at the 1s-exciton resonance) is given, where the 2s-exciton
would be clearly resolved. However, this is in contrast to
the experimental findings presented in Figure 3, where the
higher exciton states are damped out.

In our microscopic approach the position of the exci-
ton resonances in the single wells results from the quan-
tum confinement of the carriers and the binding en-
ergy Eb,d

ex due to the quasi-two dimensional Coulomb
interaction (11). As the only parameters we have ad-
justed the band offset between the GaAs wells and the
AlAs/GaAs superlattices, separating the wells, and the
effective masses of carriers in the superlattices. The phe-
nomenological parameter of the effective dimensionality d
in Table 1 is connected with the exciton binding energy
(1s-state) via Eb,d

ex = 4 Eb
ex/(d − 1)2.

The good agreement of our microscopic approach with
the experiment is the pivotal presupposition to extend the
SBE (10) in Section 4 by many-body effects between ex-
cited carriers, in order to investigate the dielectric func-
tions, as well as phase and amplitude of reflected fields for
the case of pre-pumped samples. We stay on a strict mi-
croscopic level and omit any phenomenological introduc-
tion of renormalized energies and models for an increasing
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figure will be discussed at the end of the paper.

damping of the exciton resonances into the broadened El-
liot formula, which compulsorily fails (see discussion in
Sect. 4).

For the non-excited sample the complex dielectric
functions in the wells are fixed by the broadened Elliot
formula with the parameters given in Table 1. If the sus-
ceptibility is calculated via SBE’s one has the well-known
problem, to determine the real part via KKR from the
imaginary part. This problem vanishes, if the KKR of
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the difference between the imaginary parts of the sus-
ceptibility for the excited and the non-excited sample is
performed, since the carrier-induced changes are limited
around the exciton resonance up to the band gap.

4 Nonlinear properties

In this section the nonlinear properties of phase and am-
plitude of reflected fields are investigated, which arise due
to many-body effects between incoherent, thermalized car-
riers generated by non-collinear pump pulses of different
intensity. The pump pulse arrives the sample 20 ps before
the probe, so that scattering processes destroy the macro-
scopic polarization induced by the pump before the probe
pulse arrives.

The pump-induced modifications of the reflection coef-
ficient are shown in Figure 5 for different fluences and two
wells (19.8 nm, 12.2 nm). We find pronounced changes of
both amplitude and phase in the vicinity of the excitons in
all the wells. The changes in the amplitude with increasing
excitation are similar in all wells. The excitonic features
are broadened and smeared out and undergo a small red
shift. Concerning the phase the changes differ from well to
well. In the 19.8 nm well with a more dispersive behavior
of the phase and a bump around the resonance and only
a small jump for the unexcited sample, the changes of the
phase with increasing excitation are similar to those of
the amplitudes. A different behavior is observed for the
phase in the 12.2 nm well: Here the jump of the phase by
nearly 2π becomes still more pronounced with increasing
excitation.

Theoretical calculations point out that delicate fea-
tures of the complex coefficient of reflection yield a
finger-print of the spatial and dielectric properties of the
investigated sample, e.g. small changes in the sample
structure lead to significant changes in the phase spec-
trum. Nevertheless a physical interpretation of the behav-
ior of the spectral phase is difficult. A similar effect was
found in [24] investigating the temporal evolution of trans-
mitted pulses in bulk GaAs. There a change of the sign
of jumps of the temporal resolved phase from +π to −π
was observed at polariton beats. A more detailed analysis
has shown, that the jumps become nearly step-like near
that excitation intensity, where the jumps change their
sign. This could be explained by interferences of the dif-
ferent polariton waves propagating through the sample,
which are sensitively against changes of the group veloc-
ity induced by many-body effects between carriers. So we
deduce, that the different behavior of the phases of both
wells in the non-excited case results from the changes of
these interferences due the different locations of the wells
in the sample.

In order to give a theoretical explanation of the be-
havior of the reflected light with increasing excitation we
extend the SBE (10) by inclusion of many-body effects be-
tween excited carriers. Therefore we extend the treatment
in [24] developed for bulk materials to quantum wells. We
don’t repeat all the steps of the derivation in [19], since

this describes the Fourier transformation of the time de-
pendence in the quantum kinetic scattering terms into en-
ergy dependent many-body effects, being independent on
the confinement of the carriers in the wells. For a more
detailed presentation we refer to our theoretical investiga-
tions in [30]. The structure of the SBE remains unchanged.

{
ω − k2−∆HF

k +iγ(ω)−Σr
k(ω)

}
pk(ω)

+
∑

q

{Nk ṽk−q + Θk,q(ω)} pq(ω) = Nk dcv E(ω). (13)

As consequence of screening the Coulomb interaction be-
tween carriers will be renormalized by the effective in-
teraction Θk,q(ω), the Coulomb-HF energy ∆HF

k and the
retarded interband selfenergy Σr

k(ω) describing the renor-
malization of the interband energy and the dephasing. The
interband selfenergy arises from collisions between carri-
ers, the effective interaction from collisions between carri-
ers and the laser-induced polarization. The Pauli-blocking
factor N(k) = 1−fe

k−fh
k accounts the phase space occupa-

tion for fermions, fa(k) are the distribution functions for
electrons/holes. For vanishing excitation (fa → 0) equa-
tion (13) turns into (10). Since the delay between pump
and probe pulse is large enough the carriers can be consid-
ered to be in quasi-equilibrium and both distributions are
taken as Fermi functions. As in (10) sub-band levels for
the confined electrons and holes in the well are dropped
and only the lowest state is considered.

The structure of the effective interaction matrix corre-
sponds to that in bulk case

Θab
k,q(ω)=

∑
a�=b

∫
dω̄

2π

[1 − fa
k ]Ṽ ab,>

k−q (ω̄)+ fa
k V ab,<

k−q (ω̄)
ω − εa

k − εb
q − ω̄ + i[Γ a

k + Γ b
q ]/2

· (14)

We use the same notation as in [24], where εa
k = ea

k −
∆a,HF

k −Re Σr
aa,k(εa

k) describes the renormalization of the
carrier energy ea

k and Γ a
k = −2 ImΣr

aa,k(εa
k) the damping

of carrier states in quasi-particle approximation (QPA).
Both are connected with the retarded carrier selfenergy

Σr
aa,k(εa

k)=
∑

q

∫
dω

2π

[1−fa
q ] Ṽ aa,>

k−q (ω)+ fa
q Ṽ aa,<

k−q (ω)
εa

k − εa
q − ω + iΓ a

q /2
· (15)

The Hartree-Fock energy is given by ∆a,HF
k =

∑
q ṽaa

k−q fa
q .

Equation (15) describes the influence of many-body effects
on the one-particle properties of carriers (εa

k, Γ a
k ) and has

to be solved by iteration (see the discussion in [24]). The
interband selfenergy

Σr
k(ω)=

∑
a�=b

∑
q

∫
dω̄

2π

[1−f b
q ]Ṽ aa,>

k−q (ω̄)+f b
q Ṽ aa,<

k−q (ω̄)
ω−εa

k−εb
q−ω̄ + i[Γ a

k +Γ b
q ]/2

(16)

depends on the energy ω of the photon, which gener-
ates an electron-hole pair under absorption/emission of
a plasmon. In the bulk case there is a simple relation be-
tween interband selfenergy and the effective interaction
Σr

k(ω) =
∑

q Θq,k(ω). This is not valid in the quantum
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well case considered here. Due to the different confine-
ment of electrons and holes in the wells V depends on the
carrier species a, b = e, h. Within RPA (Random Phase
Approximation) it is given by

Ṽ ab,>/<
q (ω) =

∑
c

Ṽ ac,r
q (ω)P cc,>/<

q (ω)Ṽ cb,r
q (ω), (17)

where the retarded screened interaction is used in a static
approximation

Ṽ ab,r
q (ω) −→ 4π√

q2 + κ2
Jab√

q2+κ2
= ṽab√

q2+κ2
. (18)

Here in contrast to the bare quantum-well interaction (11)
the wave number q has to be replaced by

√
q2 + κ2. The

longitudinal polarization P>/< is used in RPA and cal-
culated using its relation to the imaginary part of the re-
tarded polarization

P aa,>/<
q (ω) = n>/<(ω) ImP aa,r

q (ω) (19)

ImP aa,r
q (ω)=

∫
d2k

2π

[
fa

k −fa
k−q

]
δ(ω−ea

k−q+ea
k), (20)

where n>(ω) = 1 + n<(ω), and n<(ω) is a Bose function.
Equation (19) corresponds to a 2-dimensional limit of the
Lindhard formula.

We still haven’t considered the complete dynamical
screening for the 2d-case due to its numerical effort. Using
the static approximation for the retarded screened poten-
tial (18), we neglect the spectral properties of plasmons
and replace it by its value at ω = 0. Otherwise, for low car-
rier densities the polarization P>/< is strongly located at
small ω, which cuts the influence of spectral properties of
plasmons. Finally, we have considered the main influence
of the dynamical character of screening stemming for lower
carrier densities from the dynamical polarization P>/<.
For the bulk case we have checked numerically, that com-
plete dynamical screening becomes important for higher
carrier densities, e.g. in the vicinity of the Mott transi-
tion of the exciton and above, where gain appears [28].
The treatment above has already been used in the liter-
ature to describe the basic excitonic and gain properties
in ZnSe [16].

Furthermore we find, that the consideration of the dif-
ferent confinement of electrons and holes leading to dif-
ferent interaction potentials ṽee, ṽhh, ṽeh has only a minor
influence on the effective interaction (14) and the inter-
band selfenergy (16). Replacing all interactions by ṽeh has
proved to be a good approximation, which reduces the nu-
merical effort considerably, and can be understood as re-
sult of the summations over the species (e, h) in (14–17).
These properties are important for the behavior of the
shift of the exciton resonance with increasing excitation.
For the bulk case we have demonstrated [24,29], that a
strong compensation appears between the selfenergy (16)
and the effective interaction (14), which results in a nearly
unchanged position of the exciton, being in accordance
with the experiment. As we will demonstrate in the fol-
lowing, this is also valid for the quantum-well case with
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Fig. 7. Imaginary part of the susceptibility of a 19.8 nm GaAs-
GaAlAs quantum well at a carrier temperature of 20 K and
for different carrier densities ranging from above to below: n =
0, 1.2×109 cm−2, 3.5×109 cm−2, 1.0×1010 cm−2. The shift
of the band gap is demonstrated in the inset.

its reduced dimensionality. On the other hand this com-
pensation prevents the possibility of a simple extension of
the broadened Elliot formula considering the selfenergies
of carriers without taking into account the many-body
renormalization of the bare Coulomb interaction by the
effective interaction.

We have solved equation (13) for the coherent polariza-
tion including many-body effects as describe above. The
imaginary part of the susceptibility χ(ω) =

∑
k pk(ω)/

E(ω) (absorption) is shown in Figure 7 for different
carrier densities. The energy is given in excitonic units
(E − Eg)/Eb

ex with the gap energy Eg and the binding
energy Eb

ex = 4.2 meV for bulk GaAs.
With increasing carrier density the exciton resonance

becomes more and more broadened with a small red shift.
The band gap shifts downward to the exciton (see inset).
The Mott transition appears slightly above n = 1.0 ×
1010 cm−2.

In order to demonstrate the role of quantum-kinetic
effects, which are reflected in the dependence of inter-
band selfenergy (16) and interaction matrix (14) on the
energy, we compare our results with those of a Markovian
approximation of scattering terms in SBE’s. In this case
both many-body quantities don’t depend on the energy,
e.g. the interband selfenergy looks similar like the sum of
the quasi-particle selfenergies (15) for electrons and holes:

Σr,QPA
k =

∑
a

∑
q

∫
dω̄

2π

[1−fa
q ]Ṽ aa,>

k−q (ω̄)+fa
q Ṽ aa,<

k−q (ω̄)
εa

k − εa
q − ω̄ + i[Γ a

k +Γ a
q ]/2

· (21)

The imaginary part of this interband selfenergy was ear-
lier used as an approximation for the dephasing rate [31].
A more physical understanding of results within the
quantum-kinetic and Markovian approximation is re-
ceived, comparing the denominators in (16) and (21). The
denominator in the quantum-kinetic case becomes reso-
nant for ω = εa

k + εb
q + ω̄, describing the excitation of an

electron-hole pair of the energy εa
k +εb

q by the probe pulse
photon of energy ω, accompanied by absorption/emission
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Fig. 8. Imaginary part of the susceptibility of a 15.2 nm
GaAs-GaAlAs quantum well at a carrier temperature of 20 K
and for different carrier densities ranging from above to be-
low: n = 0 (thin line), 7.5 × 108 cm−2, 1.2 × 109 cm−2, 3.5 ×
109 cm−2, 1.0 × 1010 cm−2, quantum kinetics (solid lines),
Markovian approximation (dashed lines).

of a quantum ω̄ of the longitudinal elementary excitations
in the e-h plasma. In the Markovian case an intraband
transition similar to that in a Boltzmann scattering term
appears, which has nothing do to with an interband tran-
sition. This is a further general argument for the validity
of the quantum-kinetic approach. A quantitative compar-
ison of both approaches is presented in Figure 8. The dif-
ferences are obvious, within the Markovian treatment the
exciton is much more broadened and shifted. This is the
direct consequence of the dependence of many-body ef-
fects on the energy. For k = 0 and ω = 0 (at the band
edge) both expressions for the interband selfenergy (16)
and (21) become identical. However, while e.g. the diag-
onal dephasing within the quantum-kinetic approach is
peaked at the band edge and decreases towards the exciton
and higher energies, the constant value of dephasing rate
in the Markovian approximation is used over the whole
energy range. Thus, a much larger value for the dephasing
is used in the Markovian approximation. The same holds
for the off-diagonal dephasing and the corresponding real
parts of the interband selfenergy and the effective interac-
tion. The latter explains the stronger shift of the exciton
within Markovian approximation. Finally, one can state
from the viewpoint of the theory, although a Markovian
approximation simplifies the scattering terms in the SBE’s
in comparison to that of a quantum kinetic treatment, it
is not valid to describe the properties of the linear opti-
cal response in quantum wells at low temperatures. We
have checked numerically, that at room temperature the
deviations of the susceptibility between both approaches
become weaker. This is due to the weaker decrease of the
dephasing and the interband energy from the band edge
towards the exciton.

The dependence of the exciton shift on the tempera-
ture is demonstrated in Figure 9 for the 12.2 nm GaAs-
GaAlAs quantum well. For 10 K the position of the
exciton starts to shift with increasing density to higher
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Fig. 9. Imaginary part of the susceptibility of a 12.2 nm
GaAs-GaAlAs quantum well at a carrier temperature of 20 K
(thick solid lines), 10 K (dashed) and for different carrier
densities ranging from above to below: n = 0 (thin line),
1.2 × 109 cm−2, 3.5 × 109 cm−2, 1.0 × 1010 cm−2.

energies (blue shift), while it turns to red for higher tem-
peratures. This behavior is typical for all wells. Gener-
ally the shift of the exciton resonance arises from the
interplay of the reduction of the band gap (HF-shift and
real part of the interband selfenergy (16)) and the reduc-
tion of the Coulomb interaction due to the effective inter-
action (14). The resulting dependence on the temperature
is similar as observed in the bulk case for ZnSe around
30 K [29]. There it could be explained by the dominant
Pauli blocking Nk, reducing the interaction strength at
lower temperatures.
We don’t know the exact temperature of carriers in the

single wells for the different excitation intensities and use
the temperature as a parameter in order to fit the shift
of the exciton for the different carrier densities according
to the measured reflection. Since our sample (see Fig. 1)
consists of a series of single quantum wells the total ab-
sorption in the wells is small and the excitation is con-
sidered to be constant in all the wells. The propagating
probe light is finally absorbed in the GaAs buffer. The
final results for the complex coefficient of reflection are
presented in Figure 6, which is placed above for better
comparison with the experiment Figure 5. The theoreti-
cal result shows all characteristic changes observed in the
experiment, demonstrating the validity of the approach.
Most important, the carrier densities estimated from the
experiment agree well with the densities in the theoreti-
cal description, e.g. the highest fluence in Figure 5 corre-
sponds to n = 0.7 × 1010 cm−2 [32]. This agreement with
the experiment cannot be achieved using the results of a
Markovian approximation for the scattering terms in the
SBE’s, due to the strongly changed interplay of the shift
and broadening of the exciton resonance together with the
carrier density (see Fig. 8).

Calculating the complex coefficient of reflection with
the many-layer model described in Section 3 one has first
to determine the real part of the susceptibility. As al-
ready described in the last section we have performed a
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Fig. 10. Real part of the susceptibility for the 19.8 nm quan-
tum well with increasing excitation corresponding to Figure 6.

Kramers-Kronig transformation for the difference between
the imaginary parts of the susceptibility for the excited
and the non-excited sample and afterwards added the real
part for the unexcited sample from the broadened Elliot
formula [7]. The behavior of the real part of the suscep-
tibility is similar for all wells and is shown in Figure 10
exemplarily for the 19.9 nm well.

The changes with increasing excitation correspond to
that of the imaginary part. In contrast to the well sepa-
rated exciton resonances in the imaginary parts, the exci-
tonic features in the real parts are much more extended,
leading to an overlap of the contributions coming from
the different wells and heavy- and light-hole excitons, re-
spectively. Consequently, the exact knowledge of the real
part of the susceptibility is absolutely necessary. The good
agreement between theory and experiment in Figures 5
and 6 proves the power of our many-body approach.

5 Summary

Summarizing, we have investigated the influence of ther-
malized non-coherent carriers on the complex coefficient
of reflection and the dielectric function of GaAs quan-
tum wells with different well widths. Using the method of
spectral interferometry characteristic changes of both the
amplitude and the phase of the coefficient of reflection are
observed for increasing carrier densities. While the ampli-
tude behaves similar in all wells and will be broadened
and smeared out with increasing excitation, the behavior
of the phase differs from well to well. On the one hand
we find a jump of 2π at the exciton resonance, which is
stabilized with increasing excitation, and for other wells
a more dispersive behavior, which is as broadened and
smeared out as the amplitudes are. The experimental re-
sults for the non-excited sample can be described, fitting
the exciton parameters and a phenomenological parameter
of the effective dimension for the single wells in a broad-
ened Elliot formula. Moreover, we find perfect agreement
with a strict microscopic approach based on the Semi-
conductor Bloch Equations accounting the confinement of

carriers in the wells by an expansion with respect to the
sub-band wave functions of carriers. In order to describe
the carrier-induced changes of the coefficient of reflection
we extend the semiconductor Bloch equation incorporat-
ing many-body effects which take into account memory ef-
fects in the scattering processes between carriers and the
polarization induced by the probe pulse. We show, that
our theoretical approach is able to describe both spectral
properties of the exciton and finally all changes of the
complex coefficient of reflection induced by thermalized
non-coherent carriers.

We would like to thank D. Reuter and A. Wieck, Ruhr-Univer-
sität Bochum, Germany for supplying the sample and the
Deutsche Forschungsgemeinschaft for support.
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Ulbrich, G. Manzke, K. Henneberger, Phys. Rev. B 63,
235202 (2001)

25. S. Eshlaghi, Ph.D. thesis, Ruhr-Universität Bochum
(2000)

26. D.J. Kane, IEEE J. Quantum Electronics 35, 421 (1999)
27. M.A. Afromowitz Solid State Comm. 15, 59 (1974)
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